•••• ••• •••• ••• ••• •••• •••• •••• ••••

Online & home tutors Registered business name: mathlinE ABN: 35 631 847 853

Mathematical Methods

2006

Trial Examination 1

Instructions

Answer **all** questions. Do **not** use calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Question 1

For the function $f:(-1,\infty) \to R, f(x) = \frac{e^{x+1}}{2}$,

a. find the rule of the inverse function f^{-1} .

b. find the domain of the inverse function f^{-1} .

2 + 1 = 3 marks

Question 2
a. Find
$$\frac{d}{dx}(2\sqrt{x}\cos(x))$$
.

b. Given
$$f'(x) = \frac{1}{(2-x)^2}$$
 and $f(3) = 3$, find the rule of *f*.

2 + 2 = 4 marks

Find the smallest positive exact value (in terms of π) of the *x*-coordinate of the point where the function $y = \sqrt{3}\sin(x) + \cos(x)$ crosses the *x*-axis.

3 marks

Question 4

Given the function $f(x) = 2\sin(3x)$, where $[0, 2\pi]$,

a. find the amplitude and period of the function g such that $g(x) = \frac{1}{3}f(\frac{x}{2})$,

b. find the domain and range of the function h such that $h(x) = g(x) - \frac{2}{3}$.

2 + 2 = 4 marks

Question 5

The line y = ax - 1, a > 0, is a tangent to the curve $y = x^2$. Find the exact value of a.

The graph of $y = x^3 - 1$ is shown below.

- **a.** On the same set of axes (above) sketch the graph of $y = |x^3 1|$. Label all axis-intercepts.
- **b.** Hence find the exact area of the region bounded by the two curves and the *y*-axis.

c. State the maximal domain of
$$\frac{dy}{dx}$$
 for $y = |x^3 - 1|$.

2 + 2 + 1 = 5 marks

Question 7

Given $u(x) = \log_e(x)$ and $f(x) = x^2 + 1$, a. write down the rule of f(u(x)),

- **b.** find the derivative of f(u(x)),
- **c.** hence find an anti-derivative of $\frac{\log_e x}{x}$.

1 + 1 + 1 = 3 marks

An upright vessel in the shape of a right pyramid with a square base, side length 3 m and height 4 m, is initially filled with water. The water is pumped out from the vessel at a constant rate of 2 m^3 per minute. At what rate is the depth of the water falling when the depth is 1 m?

(Volume of pyramid $=\frac{1}{3} \times \text{base area} \times \text{height}$)

Question 9 Random variable X is normally distributed with mean 5 and standard deviation 1.5. **a.** Find Pr(X < 5).

b. Find $Pr(X \ge 8)$.

4 marks

1 + 1 = 2 marks

Random variable *X* has a distribution with probability density function given by

$$f(x) = \begin{cases} 0.3 & if \quad 0 \le x < 2\\ p & if \quad 2 \le x \le 6\\ 0 & if \ x < 0 \\ or x > 6 \end{cases}$$

a. Find the value of *p*.

b. Find $Pr(-2 < X \le 3)$.

2 + 2 = 4 marks

Question 11

A bag contains a red marble and two blue marbles. A marble is taken out of the bag at random, the colour is recorded and then returned to the bag. This is repeated for another two times. Set up a table of values to show the probability distribution of the random variable *X*: number of red marbles recorded in the three draws.

Question 12

Maria drinks either tea or coffee. The probability of drinking a cup of tea after drinking a cup of coffee is 0.80, whereas the probability of drinking a cup of coffee after drinking a cup of tea is 0.90. Find the probability that her third cup is tea if she has started her day with a cup of coffee.

3 marks

2 marks

End of Exam 1